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Large languages models (LLMs) trained on datasets of publicly available source code have established a new
state-of-the-art in code completion. However, these models are mostly unaware of the code that already exists
within a specific project, preventing the models from making good use of existing APIs. Instead, LLMs often
invent, or “hallucinate”, non-existent APIs or produce variants of already existing code. Although the API
information is available to IDEs, the input size limit of LLMs prevents code completion techniques from
including all relevant context into the prompt. This paper presents De-Hallucinator, an LLM-based code
completion technique that grounds the predictions of a model through a novel combination of retrieving
suitable API references and iteratively querying the model with increasingly suitable context information in
the prompt. The approach exploits the observation that LLMs often predict code that resembles the desired
completion, but that fails to correctly refer to already existing APIs. De-Hallucinator automatically identifies
project-specific API references related to the code prefix and to the model’s initial predictions and adds these
references into the prompt. Our evaluation applies the approach to the task of predicting API usages in
open-source Python projects. We show that De-Hallucinator consistently improves the predicted code across
four state-of-the-art LLMs compared to querying the model only with the code before the cursor. In particular,
the approach improves the edit distance of the predicted code by 23–51% and the recall of correctly predicted
API usages by 24–61% relative to the baseline.

1 INTRODUCTION
Large language models (LLMs) have proven effective in many natural language [Brown et al. 2020]
and programming tasks [Bareiß et al. 2022; Chen et al. 2021; Jain et al. 2022; Poesia et al. 2022; Xia
and Zhang 2022; Xu et al. 2022]. One of the most promising tasks is code completion, as evidenced
by the rapid adoption of LLM-based code completion tools, such as Copilot1 and Tabnine2. Since
these models are trained on large corpora of code, they usually generate syntactically correct code,
and sometimes even the exact code that the developer intends to write.
A crucial factor for obtaining the desired completions is the prompt, i.e., the input given to the

LLM. State-of-the-art LLMs build on transformers [Vaswani et al. 2017], which use self-attention
to generate sequences of tokens in an auto-regressive process. That is, the model decides what
token to predict next based on the tokens in the prompt and any already generated tokens. Hence,
designing effective prompts, sometimes called prompt engineering, is a crucial part of developing a
practical LLM-based technique [Liu et al. 2021; Nashid et al. 2023; Shrivastava et al. 2023].

For code completion, the prompt typically consists of the incomplete code, and optionally, some
additional context. The incomplete code can be at any level of granularity, such as a partial line, an
incomplete function, or an incomplete file. The context can be any textual information that may
help the model to predict a suitable completion [Jain et al. 2022; Schäfer et al. 2023]. For example, a
commonly used prompt is a fixed-size window of code just before the cursor [Chen et al. 2021; Xu
et al. 2022], i.e., code that a developer has already written and that may contain hints about what
variables, functions, etc. to use in the completion.

1https://github.com/features/copilot
2https://www.tabnine.com/
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DataStore.py
class DataStore():

"""Data structure for storing documents."""
def __init__(self, file: str):
with open(file, 'r') as f:
self.documents = f.read().split('-----')

...
def find_by_keyword(self, keyword: str) -> List[str]:
"""Returns all documents that contain the keyword."""
return [d for d in self.documents if keyword in d]

...

utils.py
...
def relevance(document: str, keyword: str) -> float:

"""Returns the relevance of the document to the keyword."""
return document.count(keyword) / len(document)

...

UI.py
...
def search(ds: DataStore, keyword: str, top_k: int) -> List[str]:

"""Returns the top_k most relevant documents that contain the keyword sorted by relevance."""
docs = ds.find_by_keyword(keyword)

return sorted(docs, key=lambda d: relevance(d, keyword), reverse=True)[:top_k]

...

Fig. 1. The desired completion of search is highlighted in gray .

def search(ds: DataStore, keyword: str, top_k: int) -> List[str]:
"""Returns the top_k most relevant documents that contain the keyword sorted by relevance."""
docs = ds.find_by_keyword(keyword)

return sorted(docs, key=lambda doc: doc.relevance , reverse=True)[:top_k]

Fig. 2. The completion of search by CodeGen-2B-mono highlighted in gray , and the wrong API usage

highlighted in red .

Despite the impressive success of LLM-based code completion, these techniques are still at an
early stage. In particular, we identify two key challenges faced by current approaches.

Challenge 1: Project-specific APIs. As LLMs are trained on huge code bases, they effectively capture
typical language idioms and commonly used libraries. In contrast, a general-purpose model lacks
knowledge of project-specific APIs, and may fail to correctly use existing functions and classes. In
particular, this lack of knowledge may cause the model to “hallucinate” APIs that actually do not
exist in the current code base [Nguyen and Nadi 2022], or perhaps even worse, it may reimplement
some functionality that is already present in the code base.

As a running example, consider three files in a large project dealingwith text documents, shown in
Fig. 1. One file, DataStore.py, contains a class implementing a data structure that stores documents
and provides a keyword-based search over the documents. Another file, utils.py, provides helper
functions, one of which allows for measuring the relevance of a document to a keyword. In a third
file, UI.py, the developer is working on a function, search, to search for the top_k documents that
are most relevant to a keyword.
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def search(ds: DataStore, keyword: str, top_k: int) -> List[str]:
"""Returns the top_k most relevant documents that contain the keyword sorted by relevance."""
docs = ds.find_by_keyword(keyword)

docs_scores = [(doc, compute_relevance_score(doc, keyword) ) for doc in docs]

sorted_docs_scores = sorted(docs_scores, key=lambda x: x[1], reverse=True)

return [doc_score[0] for doc_score in sorted_docs_scores[:top_k]]

Fig. 3. The completion of search by ChatGPT highlighted in gray , and the wrong API usage highlighted in

red .

Requesting an LLM, e.g., CodeGen [Nijkamp et al. 2022], to complete the search function given
a prompt that contains all existing code in UI.py results in Fig. 2. The code is partially correct,
but refers to a non-existing API (an attribute doc.relevance). A larger model, e.g., ChatGPT, faces
similar challenges and implements search as shown in Fig. 3. As before, the code is partially
correct but invokes an API not available in the project (a function compute_relevance_score). The
underlying problem for both models is that they are not aware of the project-specific APIs that
should be used to complete the code, and hence, the LLMs simply hallucinate some plausible but
ultimately wrong APIs.

Challenge 2: Prioritizing context. A naive solution to address Challenge 1 would be to simply add
all of the code in the project into the prompt. However, LLMs have a fixed maximum sequence
length, which restricts how many tokens one can provide to the model. Choosing the most helpful
context for a given completion task is crucial, but an inherently difficult problem, because the
optimal context depends on the desired code, which is not known a-priori. While traditional code
completion approaches typically have access to various kinds of information available in IDEs,
such as the names and types of program elements, providing all this information, or even all the
code of the project, to an LLM is impossible due to the limited prompt size.
This paper presents De-Hallucinator, which addresses the above challenges through a novel

combination of retrieval-augmented prompts and an iterative form of LLM-based code completion.
Our approach uses three types of prompts, which provide increasingly suitable context information.
At first, De-Hallucinator queries the LLM with the conventional prompt that contains only the
preceding code. Because the preceding code alone often is insufficient to obtain a correct completion,
the approach then augments the prompt with API references that are most similar to the preceding
code, which makes the second prompt type. However, also this prompt may fail to find a suitable
completion, because the preceding code might not be similar to the desired API, or there are other
APIs more similar to the preceding code than the correct one. Since LLMs often predict code that
resembles the desired completion, but fail to correctly refer to project-specific APIs, the completion
from the previous prompt types often resembles the desired API. Hence, to construct the third type
of prompt, De-Hallucinator leverages these hints about what code the model intends to predict to
retrieve suitable project-specific APIs, which are then added to the third type of prompt.
The result of these queries to the LLMs is a sequence of completions likely to be increasingly

suitable. In a practical deployment, these completions could be shown to a user as a ranked list, or
be further filtered by a validation mechanism, such as running a test suite.
Our approach addresses the two challenges described above. To address Challenge 1, De-

Hallucinator adds information about project-specific APIs into the prompt. As a result, the model
avoids (re)inventing code and instead correctly invokes existing APIs. The idea of augmenting
an LLM with well-grounded facts relates to work on grounding of language models for natural
languages [Ahn et al. 2022; Gu et al. 2022; Roy 2005]. To the best of our knowledge, we are the
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first to apply grounding to the problem of predicting API usages in code. To address Challenge 2,
De-Hallucinator uses the model itself to gather hints about what kind of context information is
most suitable to help the model make a better prediction. This iterative approach complements
prior work that tries to guess the most suitable context from the incomplete code alone [Ding et al.
2022; Shrivastava et al. 2023]. Our work also relates to other retrieval-based prompt augmentation
techniques, which try to find suitable few-shot examples [Nashid et al. 2023] . In contrast to existing
retrieval-based prompt augmentation, De-Hallucinator retrieves API references instead of few-shot
examples and addresses the task of code completion.
The presented approach offers several benefits. First, De-Hallucinator works with any off-the-

shelf LLM trained on code, because the approach treats the model as a black box. In particular, we do
not require to train or fine-tune the model in any way, but simply exploit the fact that its predictions
contain implicit hints about additional context the model would benefit from. Second, because
APIs usually evolve only slowly, De-Hallucinator can pre-compute, and occasionally update in the
background, the set of project-specific API references. As a result, the latency of code completion is
not impacted by any expensive program analysis, which is important for practical adoption. Finally,
the approach is fully transparent to developers, because the approach hides the iterative interaction
with the LLM from the user and simply returns a ranked list of predictions.

We evaluate De-Hallucinator by applying the approach to four state-of-the-art LLMs for code,
namely CodeGen [Nijkamp et al. 2022], CodeGen 2.5 [Nijkamp et al. 2023], UniXcoder [Guo et al.
2022a], and StarCoder+ [Li et al. 2023a]. Although, conceptually, the approach can be applied to
any programming language, our evaluation focuses on Python as it is one of the most popular
languages 3 and a common target of prior work on code completion [Chen et al. 2021; Guo et al.
2022a; Li et al. 2018, 2023a; Nijkamp et al. 2023, 2022; Svyatkovskiy et al. 2019; Zhang et al. 2023b].
Compared to querying the model with a prompt that contains only the code before the missing
lines, we find that De-Hallucinator enables the model to provide more accurate predictions. In
particular, we show a relative improvement of 23.28-50.64% in edit distance, of 12.12-27.48% in
normalized edit similarity, and of 23.90-60.98% in recall of correctly predicted API usages.

In summary, this paper contributes the following:
• Empirical motivation showing that the problem of predicting API usages affects a large
portion of failed code completion tasks.

• A technique for addressing this problem using off-the-shelf, unmodified LLMs.
• A novel algorithm that combines retrieval-augmented prompting with an iterative method
for constructing increasingly suitable prompts by using the hallucinations produced in earlier
iterations to augment the context information provided in the prompts of future iterations.

• Empirical evidence that, across four state-of-the-art LLMs, De-Hallucinator offers more
accurate completions than querying the same models with a fixed prompt.

2 PRELIMINARY STUDY
Before delving into our approach, we validate the motivation for this work by performing a prelim-
inary study, which assesses the importance of the two challenges described in the introduction.

2.1 Project-Specific APIs
The main motivation for this work is our observation that LLMs often hallucinates code that
resembles the desired completion, but that fails to correctly refer to an API. To assess the importance
of this limitation, we manually investigate and classify the reasons why an LLM fails to predict the
desired completion. We perform this preliminary study on 50 function-level code completion tasks,

3https://octoverse.github.com/2022/top-programming-languages
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which we collect by (i) randomly selecting ten Python projects from a curated list of open-source
projects 4 and (ii) by then randomly selecting five functions from each project. The only filtering
we perform is to ignore functions with more than 25 lines, as these are likely out of reach for
today’s LLMs. For each of the 50 functions, we query an LLM (CodeGen 2.5 with 7B parameters and
4-bit quantization) with the code before the beginning of the function body, including the function
signature and any docstring, in the prompt.
Given the 50 pairs of an LLM-predicted function body and the ground-truth function body, we

manually classify them based on two questions. First, is the prediction correct w.r.t. the ground
truth, where “correct” includes exact matches and semantically equivalent code? Second, does the
ground truth contain an API usage, e.g., a function call, that is missing in the prediction? Initially,
two of the authors independently classify the 50 pairs, with an inter-rater agreement (Cohen’s
kappa) of 0.76, which is considered excellent [Fleiss 1981]. The two authors then discuss the few
cases with initial disagreement. The initial disagreement in each of the cases proved to be due to a
human error, such as missing the difference between similar identifier names, high and highpass,
or similar literal values, 3 and 8. After resolving these errors, the authors reach a consensus about
all 50 pairs.

The final inspection results show that in 13 out of the 50 cases, the LLM either predicts exactly
the expected function body or a function body that is semantically equivalent to the expected one.
For 22 out of the 37 remaining cases, there is at least one API usage that the LLM fails to correctly
predict, similar to the examples in Fig. 2 and Fig. 3. In other words, the problem identified and
addressed in this work affects 44% of all studied function-level code completion tasks, and even
59% of all tasks where the LLM alone fails to predict the expected code.

2.2 Prioritizing Context
To validate the importance of the second challenge, we compare the amount of code in a single
project to the prompt sizes of high-end LLMs. The models in the popular GPT series by OpenAI
have prompt sizes between 2,048 (GPT-3 models) and 32,768 (GPT-4-32k) tokens. In contrast, in
a sample dataset of 50 Python projects, which are randomly selected from the same curated list
of projects as above, there are 488,635 tokens per project, on average. Furthermore, the average
project has around 13 files longer than 8,192 tokens, and 22 projects in our sample have at least
one file longer than 32,768 tokens. This means that even knowing the exact file that contains
the relevant context (e.g., based on heuristics, such as recently used files or similar file names)
leaves us with more tokens than one could fit into the prompt. In other words, simply adding all
potentially relevant code to the prompt is not a viable solution, but we need to prioritize the context
information.

3 APPROACH
This section describes an LLM-based code completion approach that uses retrieval of relevant APIs
to improve the prompt for additional queries to the model. We call the approach De-Hallucinator,
as it reduces the hallucinations of the LLM by providing relevant API references to ground the
model. After defining the problem that De-Hallucinator addresses (Section 3.1), we provide an
overview of the approach and present its main algorithm (Section 3.2). Sections 3.3 to 3.6 then
present each of the components of De-Hallucinator in detail.

4https://github.com/vinta/awesome-python. We randomly sample ten application domains and then sample one project
from each domain.
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Fig. 4. Overview of De-Hallucinator.

3.1 Problem Definition
Before describing our approach, we define the problem that De-Hallucinator addresses. Given an
incomplete piece of code 𝑐 , where some code is missing at a cursor location 𝑙 , the problem is to
predict code 𝑐′ to be placed into 𝑐 at location 𝑙 . Specifically, we consider the problem where 𝑐′
consists of one or more missing lines that contain an API usage, and where 𝑐 is all the code in the
project except for the code between 𝑙 and the end of the current function.

This problem definition matches the common scenario of a developer implementing a function
in an existing project, where the code to be written should use a project-specific API. Note that the
API usage does not have to start directly at the cursor location, but only to start in the next line.
For example, suppose that the cursor in Fig. 1 is at the beginning of the code marked with gray
background. Everything above the cursor is our incomplete code 𝑐 , and the problem is to predict
the marked code 𝑐′, which refers, e.g, to the project-specific relevance API.
To address this problem, we assume to have a generative language model𝑚 trained on a large

corpus of code. The code 𝑐 is part of a project 𝑝 , which may contain a lot of already written code
that 𝑐′ could refer to. However, we assume that the existing code in 𝑝 largely exceeds the maximum
input size accepted by𝑚. We further assume that the existing code in 𝑝 has not been part of𝑚’s
training data, which matches the practical usage scenario of using a single large-scale model as the
basis of a code completion tool used by many projects.

3.2 Overview and Main Algorithm
Figure 4 gives a high-level overview of the approach, and Fig. 5 shows each step of the approach
on our running example from Fig. 1. Using the code before the cursor location as an initial prompt,
De-Hallucinator queries the model to get an initial completion. Because the model is not aware of
project-specific APIs, the completion is likely to not make best use of these APIs. For the example
in Fig. 5, the initial completion refers to a non-existing API doc.relevance.

To help the model predict a better completion, De-Hallucinator retrieves a ranked list of related
API references in two ways. The first is to retrieve API references similar to the initial prompt.
The second approach is to retrieve them based on similarity to the preceding code and the initial
completion of the model. In Fig. 5, this step retrieves a reference to the relevance function defined
in utils.py. Note that in this example the retrieved API reference is the same when retrieved
based on the initial prompt and based on the initial completion. For efficient retrieval of APIs,
De-Hallucinator analyzes the project in advance and indexes all APIs in the project. The approach
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Initial prompt
...
def search(ds: DataStore, keyword: str, top_k: int) -> List[str]:

"""Returns the top_k most relevant documents that contain the keyword sorted by relevance."""
docs = ds.find_by_keyword(keyword)

Initial completion
def search(ds: DataStore, keyword: str, top_k: int) -> List[str]:

"""Returns the top_k most relevant documents that contain the keyword sorted by relevance."""
docs = ds.find_by_keyword(keyword)

return sorted(docs, key=lambda doc: doc.relevance , reverse=True)[:top_k]

Most relevant API reference
relevance(document: str, keyword: str) -> float # Returns the relevance of the document to the

keyword.

Augmented prompt
# API Reference:
# relevance(document: str, keyword: str) -> float # Returns the relevance of the document to the

keyword.
def search(ds: DataStore, keyword: str, top_k: int) -> List[str]:

"""Returns the top_k most relevant documents that contain the keyword sorted by relevance."""
docs = ds.find_by_keyword(keyword)

Second completion
def search(ds: DataStore, keyword: str, top_k: int) -> List[str]:

"""Returns the top_k most relevant documents that contain the keyword sorted by relevance."""
docs = ds.find_by_keyword(keyword)

return sorted(docs, key=lambda doc: relevance(keyword, doc), reverse=True)[:top_k] # <- Correct

Fig. 5. Step-by-step progression of De-Hallucinator on the example in Fig. 1.

then uses the related API references to construct an augmented prompt, and queries the model
again. In the example, the second query returns the correct completion, as shown at the bottom of
Fig. 5. De-Hallucinator continues the retrieval based on the previous completion by the model until
either reaching a fixed point, i.e., the model generates the same completion twice in a row, or until
exhausting a configurable maximum number of queries, 𝑘 .
?? 1 shows the pseudo-code of the main algorithm of De-Hallucinator. The call to retrieveRel-

evantAPIrefs corresponds to the “Retrieval of related APIs” component in Fig. 4, and the call to
constructPrompt matches the “Prompt construction” component in the figure. The following presents
these two components, as well as the static pre-analysis that enables an efficient retrieval of related
APIs, in detail.

3.3 Static Pre-Analysis
To ensure that the retrieval of API references does not unnecessarily slow down the code completion,
De-Hallucinator has a preprocessing phase that indexes the current project for fast retrieval. We
use API reference throughout this paper to refer to a piece of text extracted from the project’s code,
which can be added to the prompt to provide further information about a project-specific API.

Definition 3.1 (API reference). An API reference is one of the following:
• A function reference, which consists of
– the qualified name of the function,
– the parameter names,
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Algorithm 1:Main algorithm of De-Hallucinator.
Data: Incomplete code 𝑐 , model𝑚, budget 𝑘
Result: List C of completions
prompt = 𝑐;
𝑐′ =𝑚(prompt);
prevCompletion = 𝑐′;
C = [𝑐′];
APIrefs = retrieveRelevantAPIrefs(𝑐);
prompt = constructPrompt (𝑐,APIrefs);
𝑐′ =𝑚(prompt);
C = C + [𝑐′];
for 𝑖 ∈ {1, ..., 𝑘 − 1} do

𝑐′ =𝑚(prompt);
C = C + [𝑐′];
if prevCompletion == 𝑐′ then

break;
end
prevCompletion = 𝑐′;
APIrefs = retrieveRelevantAPIrefs(𝑐 + 𝑐′);
prompt = constructPrompt (𝑐,APIrefs);

end
return C

– any available default values for arguments,
– any available type annotations, and
– any available function-level docstring.

• A class reference, which consists of
– the qualified name of the class,
– the parent class(es), and
– any available class-level docstring.

• An attribute reference, which is the qualified name of a self attribute assigned to in the
__init__ function.

Table 1 shows some of the API references extracted from our example project.
To extract API references from a project, the preprocessing phase of De-Hallucinator builds on

CodeQL.5 CodeQL is a query language and framework for statically analyzing source code, which
provides a declarative approach for querying a code base. The framework uses static analysis to
create a database and run the queries. Using CodeQL allows adding support for other languages
with minimal effort. We implement two CodeQL queries, one for function references, and the
other for class references and attribute references. Alternatively to our approach for gathering API
references, an IDE-based implementation could reuse information about the current project that is
computed by the static code indexing performed by an IDE anyway.

Because an effective code completion techniquemust provide suggestions quickly, De-Hallucinator
indexes the extracted API references for fast retrieval, which takes two steps. The first step of the
indexing is to embed API references into a vector space. Formally, we need an embedding function,
5https://codeql.github.com/
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Table 1. Examples of API references extracted from the project in Fig. 1.

Source API reference Type of API reference

DataStore.py in Fig. 1 DataStore.find_by_keyword(self, keyword:

str) -> List[str] # Returns all documents

that contain the keyword.

Function reference

utils.py in Fig. 1 relevance(document: str, keyword: str) ->

float # Returns the relevance of the

document to the keyword.

Function reference

DataStore.py in Fig. 1 class DataStore() # Data structure for

storing documents.

Class reference

DataStore.py in Fig. 1 DataStore.documents Attribute reference

𝐸, for which 𝐸 (𝑐) = 𝑣𝑐 ∈ R𝑑 , such that, for two code pieces 𝑐1 and 𝑐2, the cosine similarity of their
embeddings, 𝑣𝑐1 · 𝑣𝑐2/(|𝑣𝑐1 | |𝑣𝑐2 |), approximates the semantic similarity of 𝑐1 and 𝑐2. To this end,
we embed the API references into a vector space using Sentence-BERT [Reimers and Gurevych
2019], a BERT-based model designed for measuring the semantic similarity between sentences.
We use a variant of this model that is pre-trained on code.6 The model maps sentences, or in our
case lines of code, into a dense vector representation of size 768. Because our approach uses the
embedding function as a black-box, any other embedding model or similarity-preserving vector
representation [Wainakh et al. 2021] could also be used instead, e.g., GloVe [Pennington et al. 2014],
BERT [Devlin et al. 2017], or FastText [Bojanowski et al. 2017]. The second step, after embedding
the API references, is to index the normalized vectors (𝑣𝑐/|𝑣𝑐 | for all 𝑐 ∈ API references) in a Ball
Tree.7 This index allows for fast retrieval of nearest neighbors.

3.4 Retrieval of Related APIs
The retrieval module takes an input code piece and returns a ranked list of project-specific API
references that are most similar to the input. To this end, De-Hallucinator uses a similarity metric
that compares lines of code in the input with project-specific API references. Specifically, we embed
each line in the input using the same pre-trained SentenceBERT model as in Section 3.3, and
then normalize the vectors. The normalization is done to turn the Euclidean distance used by the
Ball Tree into cosine similarity, which is commonly used. More formally, assuming that 𝐸 is the
SentenceBERT model, we calculate 𝑣𝑙 = 𝐸 (𝑙) for each line 𝑙 ∈ completion, and then normalize the
vectors into 𝑣𝑙/|𝑣𝑙 |. Next, we find the closest API reference of each line by querying the Ball Tree
constructed in Section 3.3. The result is a list 𝑅𝑙 of API references, sorted by their similarity to the
line 𝑙 in the input. To obtain a single ranked list of API references, we merge the lists 𝑅𝑙 across all
𝑙 ∈ completion based on their similarity scores. This finally yields a single list 𝑅 of API references,
of which we use the top-𝑛 as additional context to add into the prompt.
Getting back to our running example, consider the third section in Fig. 5. It shows the API

reference from our example project that the retrieval component finds to be the top-most relevant
(𝑛 = 1) for both the incomplete code (initial prompt) and the initial prediction of the LLM. Our
implementation considers multiple relevant API references, i.e., 𝑛 > 1, which we omit in the
example for brevity.

6https://huggingface.co/flax-sentence-embeddings/st-codesearch-
distilroberta-base

7https://scikit-learn.org/stable/modules/neighbors.html#ball-tree
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# API Reference:
# <most relevant API reference>
# <2nd most relevant API reference>
# ...
# <𝑛th most relevant API reference>
<clipped original prefix code>

Fig. 6. Template for the augmented prompt.

3.5 Prompt Construction
Given the code-to-complete and a list 𝑅 of API references that may enable the LLM to accurately
complete the code, De-Hallucinator constructs an augmented prompt for querying the model. The
prompt is designed in a way that resembles “normal” code, i.e., the kind of data that the LLM has
been trained on. The prompt structure we use is shown in Fig. 6. The API references are shown as
a block of commented lines at the beginning of the prompt. These lines start with API Reference:,
and the following lines contain the relevant API references in decreasing order of similarity to the
lines in the input of the retrieval module. This commented block is followed by the original prompt
clipped to fit in the prompt size.
For our running example, the fourth section in Fig. 5 shows the prompt for function search in

our example, augmented with the API reference. Given the augmented prompt, the same LLM that
predicted the code in Fig. 2, completes this function correctly in the last section of Fig. 5.

3.6 Integration with the LLM
De-Hallucinator is designed with minimal assumptions about the underlying LLM. The approach
considers the model to be a black box that we query with a string that contains incomplete code
and that returns a string with a suggested completion of the code. After receiving the completion,
De-Hallucinator post-processes it to make the completion syntactically correct and to remove any
extra completions that are out of the scope of the current completion. For example, during the
completion of a function body, when the model generates a long completion, it is possible that
the completion closes the scope of the current function, and starts defining a new function, or
write code outside of the function body. Since our approach is focused towards API usages, the
post-processing aims to mitigate these issues by cutting off the generated completion at the end of
the line that completes the API usage.

4 IMPLEMENTATION
We implement the De-Hallucinator approach into a Python-based tool. For statically extracting
API references from the current project, the implementation builds on CodeQL, and because we
target Python code, on the Python language support of CodeQL, which offers easy access to the
classes, functions, etc. in a code base. To access the LLMs, we use the HuggingFace transformers
library,8 making our implementation compatible with many publicly available models. Adapting
our implementation to other models requires only to adjust the prompt size of the model and to
select other parameters passed to its API.

5 EVALUATION
To evaluate the effectiveness and efficiency of our approach, we perform experiments that answer
the following research questions:
8https://huggingface.co/transformers/

, Vol. 1, No. 1, Article . Publication date: January 2024.



De-Hallucinator: Iterative Grounding for LLM-Based Code Completion

Table 2. List of Python projects used for the evaluation.

Project (owner/name) Commit Description LoC Stars∗

graphql-python/graphene 57cbef6 GraphQL wrapper 9,484 7.7k
geopy/geopy ef48a8c Client for geocoding web services 10,000 3.9k
nvbn/thefuck ceeaeab CLI tool to correct commands 12,181 77.1k
aaugustin/websockets∗∗ ba1ed7a Websocket server & client library 14,186 4.5k
arrow-py/arrow 74a759b Library for easier use of date & time 14,402 8.3k
lektor/lektor be3c8cb Static CMS framework 16,852 3.7k
Parsely/streamparse aabd9d0 Python interface for job scheduling

and distribution
26,214 1.5k

Supervisor/supervisor ca54549 Process control for Unix-like sys-
tems

29,860 7.8k

mwaskom/seaborn f9827a3 Statistical data visualization library 37,367 10.7k
psf/black ef6e079 Python code formatter 106,005 32.2k
scikit-learn/scikit-learn f3c6fd6 Machine learning framework for

Python
193,863 54.0k

∗ As of May 1, 2023
∗∗ The project has been moved to python-websockets/websockets

RQ1: How much does De-Hallucinator improve code completions compared to querying the LLM
with the default prompt only?

RQ2: How effective is De-Hallucinator at adding the correct API references to the prompt?
RQ3: How do the hyperparameters of De-Hallucinator affect the completions?
RQ4: How efficient is De-Hallucinator, and how much do the different steps of the approach

contribute to the running time?

5.1 Experimental Setup
5.1.1 LLMs and Baseline. We evaluate on four state-of-the-art LLMs: CodeGen [Nijkamp et al.
2022] with 2.7B parameters (Salesforce/codegen-2B-mono), CodeGen 2.5 [Nijkamp et al. 2023]
with 7B parameters (Salesforce/codegen25-7b-mono), UniXCoder [Guo et al. 2022a] with 125M
parameters (microsoft/unixcoder-base), and StarCoder+ [Li et al. 2023b] with 15.5B parameters
(bigcode/starcoderplus). The reasons for selecting these models are (i) that, unlike the models
offered by OpenAI, they are freely available and hence allows for building upon our work in
the future, and (ii) they cover a variety of parameter sizes, model architectures, and pre-training
processes. We leave all parameters of the models at their defaults, except for the maximum new
tokens parameter, which we set to 256 to allow for longer completions. As a baseline, we query the
models with a prompt that contains all the code preceding the cursor. In case this prompt exceeds
the maximum prompt size of 2,048 tokens, we truncate the prompt from the beginning.

5.1.2 Dataset and Ground Truth. With the goal of having a diverse set of projects in terms of size,
domain, and popularity, we gather a dataset of eleven public Python projects from GitHub, shown
in Table 2. These projects cover different domains, such as data visualization, machine learning,
process management, job distribution, and geocoding. Likewise, the dataset has a wide range of
project sizes and levels of popularity, as measured by GitHub stars.
We construct a dataset of API-related code completion tasks by removing API usages from the

benchmark projects and by considering the removed code as the ground truth to be predicted by a
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model. Specifically, we use LibCST9 to identify API calls that use an API from another file in the
same project. For each such API call, we remove the lines containing the call. If a call spans multiple
lines, we remove all of them. To prevent data leakage from imports of the API in the ground truth,
we also remove all local imports (i.e. starting with .) and imports of the package itself. Next, we
check if the off-the-shelf LLMs can predict the exact code as in the original file using the code
preceding the cursor as the prompt. If an LLM predicts exactly the original code, we ignore this
API usage for the evaluation, as there is no need to further improve the prediction. We continue
with this process for each of the four models, until we have ten code completion tasks for each of
the eleven projects. During this process, we ignore 18, 51, 76, and 31 completions for UniXcoder,
CodeGen, CodeGen v2.5, and StarCoder+, respectively. Moreover, for StarCoder+ 26 completions
result in non-ascii completions, which we also ignore. Overall, the evaluation dataset consists of 11
projects × 10 × 4 models = 440 code completion tasks.

During the static pre-analysis, we ensure to not index any information that would not be available
during the code completion task. This is necessary because we run our CodeQL queries (Section 3.3)
on a database that contains all of the code in the project, including the function that we want
to complete. To avoid any leakage of information, the static pre-analysis does not extract any
information from function bodies, except for __init__ functions, which are analyzed to extract
attribute references, and which we therefore exclude from the evaluation dataset.

5.1.3 Metrics. We evaluate the code completions in three ways:
• Edit distance. To quantify the number of edits a developer would have to apply after receiving
a code completion, we measure the edit distance between the predicted code and the ground
truth. This metric provides a sense for how many token edits are saved when using De-
Hallucinator. We compute edit distance using the Levenshtein distance at the subtoken level.
For each pair of completion and ground truth, we tokenize the code pieces with a GPT-2 fast
tokenizer,10 and then calculate the edit distance using NLTK’s edit_distance.11 That is, given
predicted code 𝑐𝑝𝑟𝑒𝑑 , a ground truth 𝑐𝑐𝑜𝑟𝑟𝑒𝑐𝑡 , and the tokenizer function 𝑡𝑜𝑘𝑒𝑛𝑠 , the metric is:

𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑡𝑜𝑘𝑒𝑛𝑠 (𝑐𝑝𝑟𝑒𝑑 ), 𝑡𝑜𝑘𝑒𝑛𝑠 (𝑐𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ))
• Normalized edit similarity. Similar to previous work [Lu et al. 2022] we also compute the
normalized edit similarity. To this end, we normalize the absolute edit distance (computed as
above) to the length of the longer of the two token sequences, and then turn the result into a
similarity metric:

1 −
𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑡𝑜𝑘𝑒𝑛𝑠 (𝑐𝑝𝑟𝑒𝑑 ), 𝑡𝑜𝑘𝑒𝑛𝑠 (𝑐𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ))

𝑚𝑎𝑥 ( |𝑡𝑜𝑘𝑒𝑛𝑠 (𝑐𝑝𝑟𝑒𝑑 ) |, |𝑡𝑜𝑘𝑒𝑛𝑠 (𝑐𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ) |)
• Exact API match. Since the goal of De-Hallucinator is to predict better API usages, we measure
how many of all desired API usages are predicted exactly as in the ground truth. To identify
the API usages in the lines of code to complete, we extract function calls, including the
access path to the function, and the parameters. For example, given a line of code docs =

ds.find_by_keyword(keyword) the corresponding API usage is ds.find_by_keyword(keyword). The
exact API match then is the percentage of exact matches between the prediction and the
ground truth API usages. Let 𝑎𝑝𝑖 (𝑐) be the API usages in code 𝑐 , then the metric is:

|𝑎𝑝𝑖 (𝑐𝑝𝑟𝑒𝑑 ) ∩ 𝑎𝑝𝑖 (𝑐𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ) |
|𝑎𝑝𝑖 (𝑐𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ) |

9https://libcst.readthedocs.io/en/latest/
10https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2TokenizerFast
11https://www.nltk.org/_modules/nltk/metrics/distance.html#edit_distance
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Table 3. Effectiveness of De-Hallucinator compared to the baseline on four off-the-shelf LLMs. The bold
numbers show statistically significant improvement over the baseline (Type 1). The numbers in parentheses
show the relative improvement over the baseline (Type 1).

Metric Prompt
type

UniXCoder
(125M)

CodeGen v1
(2B)

CodeGen v2.5
(7B)

StarCoder+
(15B)

Edit distance
(lower is better)

Type 1 52.39 40.04 47.21 44.60
Type 2 46.80 (10.67%) 33.42 (16.53%) 31.64 (32.98%) 35.94 (19.42%)
Type 3 25.86 (50.64%) 30.72 (23.28%) 30.09 (36.26%) 33.50 (24.89%)

Normalized
edit similarity
(higher is better)

Type 1 33.40 43.64 43.93 33.24
Type 2 37.31 (11.71%) 48.00 (9.99%) 49.40 (12.45%) 38.00 (14.32%)
Type 3 42.58 (27.48%) 48.93 (12.12%) 50.15 (14.16%) 39.66 (19.31%)

Exact
API match
(higher is better)

Type 1 4.77 7.12 8.33 5.68
Type 2 4.77 (0.0%) 10.15 (42.56%) 11.59 (39.13%) 7.50 (32.04%)
Type 3 5.91 (23.90%) 11.06 (55.34%) 13.41 (60.98%) 7.50 (32.04%)

For all the above metrics, we report the best completion obtained among 𝑘 completions of De-
Hallucinator. Measuring the 𝑏𝑒𝑠𝑡@𝑘 matches a common usage scenario where a developer inspects
a ranked list of code completion suggestions, and picks the first that matches the developer’s
expectations.

5.1.4 Hardware. We perform the experiments with the CodeGen v2.5 model on a machine equipped
with two Nvidia T4 GPUs, each having 16GB of memory. The experiments with the UniXcoder,
CodeGen, and the StarCoder+ models are performed on a machine with a single Nvidia Tesla V100
with 32GB of memory. Each machine has a 48-core Intel Xeon CPU clocked at 2.20GHz.

5.2 RQ1: Effectiveness of De-Hallucinator
In the first set of experiments, we investigate to what extent De-Hallucinator improves code
completions compared to the baseline. By default, we run De-Hallucinator with 𝑘 = 4 iterations
and add 𝑛 = 20 API references into the prompt. As shown in Table 3, De-Hallucinator reduces
the edit distance by 9.32 to 26.53 tokens, on average, which is between 23.28% and 50.64% relative
improvement. This in turn translates to normalized edit similarity improvements of 12.12% to 27.48%
relative to the baseline. Moreover, the approach relatively improves the exact API matches by 23.90%
to 60.98%. For example, for the CodeGen v2.5 model, De-Hallucinator is able to predict 1.5 times
more APIs correctly than the baseline. We evaluate the statistical significance of our improvements
using the Wilcoxon test, with the Pratt method to deal with zero values. De-Hallucinator shows
statistically significant improvements over the baseline consistently for all metrics and all models.
The fact that the highest improvement is achieved for the exact API match metric shows that
De-Hallucinator effectively achieves its goal of improving API usages in code completions. Given
the importance of this problem in realistic code completion scenarios (Section 2), De-Hallucinator
has the potential to significantly improve the productivity of developers.

5.2.1 Examples. Figure 7 shows the initial completion of CodeGen, with only the preceding
code as prompt. In this example the model uses the assert statement instead of the custom
assert_equivalent function, which is defined in the project. After augmenting the prompt with
the API reference of this function, the same model correctly predicts the call to the existing API, as
shown in Fig. 7.
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...
def test_idempotent_any_syntatically_valid_python(

src_contents: str, mode: black.FileMode
) -> None:

...
dst_contents = black.format_str(src_contents, mode=mode)

...
# And check that we got equivalent and stable output.

assert dst_contents == src_contents # <- baseline

black.assert_equivalent(src_contents, dst_contents) # <- ground truth

# API Reference:
# check_stability_and_equivalence( src_contents: str, dst_contents: str, *, mode: Mode) -> None #

Perform stability and equivalence checks. Raise AssertionError if source and destination
contents ar

# assert_equivalent(src: str, dst: str) -> None # Raise AssertionError if `src` and `dst` aren't

equivalent.
...
def test_idempotent_any_syntatically_valid_python(

src_contents: str, mode: black.FileMode
) -> None:

...
dst_contents = black.format_str(src_contents, mode=mode)

...
# And check that we got equivalent and stable output.

assert_equivalent(src_contents, dst_contents) # <- De-Hallucinator

Fig. 7. Completion by CodeGen (baseline) highlighted in red , the ground truth highlighted in green , and

the completion by De-Hallucinator using the augmented prompt highlighted in blue .

Figure 8 shows another scenario where De-Hallucinator improves the completion. In this case
the correct function is used by the model in the first try, but the order of parameters is wrong.
By providing the API reference in the prompt, De-Hallucinator predicts the correct API usage, as
shown in Fig. 8.

5.3 RQ2: Correct Retrieval of API References
To better understand the effectiveness of De-Hallucinator, we investigate how often the approach
successfully augments the prompt with the correct API references. Answering this question for all
completion tasks and all LLMs is difficult, because comparing the API references to the API usages
is non-trivial due to different ways of importing APIs and passing arguments. Instead, we manually
inspect a sample of 20 completion tasks per LLM and count the number of times an API used in the
ground truth is successfully added to the prompt by De-Hallucinator.
In our inspected samples, there are in total between 22 and 25 API usages (a completion can

contain multiple API usages). The new prompt generated by our approach contains the correct
API between two and six times, as shown in Table 4. Moreover, for CodeGen and CodeGen v2.5
there are five completion tasks where the completion from prompt of type 1 either misses the APIs
or uses them incorrectly, but in the completions from type 2 or type 3 prompts, the API reference
section of the prompt contains the correct API. The same happens for UniXcoder in four tasks and
for StarCoder+ in two tasks. Overall, the results show that De-Hallucinator is able to successfully
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async def schedule_formatting(sources: Set[Path], fast: bool, write_back: WriteBack,
mode: Mode, report: "Report", loop: asyncio.AbstractEventLoop,
executor: "Executor") -> None:

"""Run formatting of `sources` in parallel using the provided `executor`.
(Use ProcessPoolExecutors for actual parallelism.)
`write_back`, `fast`, and `mode` options are passed to
:func:`format_file_in_place`.
"""
cache: Cache = {}
if write_back not in (WriteBack.DIFF, WriteBack.COLOR_DIFF):

cache = read_cache(mode)

sources, cached = filter_cached(sources, cache) # <- baseline

sources, cached = filter_cached(cache, sources) # <- ground truth

# API Reference:
# filter_cached(cache: Cache, sources: Iterable[Path]) -> Tuple[Set[Path], Set[Path]] # Split an

iterable of paths in `sources` into two sets. The first contains paths of files that modifi
...
async def schedule_formatting(sources: Set[Path], fast: bool, write_back: WriteBack,

mode: Mode, report: "Report", loop: asyncio.AbstractEventLoop,
executor: "Executor") -> None:

"""Run formatting of `sources` in parallel using the provided `executor`.
(Use ProcessPoolExecutors for actual parallelism.)
`write_back`, `fast`, and `mode` options are passed to
:func:`format_file_in_place`.
"""
cache: Cache = {}
if write_back not in (WriteBack.DIFF, WriteBack.COLOR_DIFF):

cache = read_cache(mode)

sources, cached = filter_cached(cache, sources) # <- De-Hallucinator

Fig. 8. Completion by CodeGen highlighted in red , the ground truth, highlighted in green , and the

completion by De-Hallucinator after augmenting the prompt with relevant APIs highlighted in blue .

Table 4. Number of APIs correctly augmented in the prompt.

Model Tasks
API usages

Missing/wrong Expected API ref. added
in init. comp. Type 2 Type 3 (k=2) Type 3 (k=3) Type 3 (k=4)

UniXcoder 20 18 4 5 5 5
CodeGen v1 20 17 5 6 6 6
CodeGen v2.5 20 15 5 5 6 6
StarCoder+ 20 17 2 3 3 3

augment the prompt with the correct API references in many cases. For cases where the approach
fails to add the correct API reference into the prompt, the main reason is that the initial completion
has low relevance w.r.t. the ground truth.
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5.4 RQ3: Impact of the Hyperparameters
This research question evaluates the impact of the two main parameters of our approach. First, we
consider the number 𝑘 of iterations of the main loop of De-Hallucinator, where we run the approach
with 𝑘 ∈ {2, 3, 4, 5}. As shown in Fig. 9, the first iteration provides significant improvement on all
metrics, but the gain is reduced with further iterations. Higher values of 𝑘 are beneficial when
the model cannot immediately predict a relevant completion, but upon presenting the first round
of API references, the model responds with a more relevant completion. At the same time, even
𝑘 = 2 provides clear improvements over the baseline, which makes De-Hallucinator useful even in
scenarios where the cost of querying the model is high. We choose 𝑘 = 4 for all other experiments
in this paper, since 𝑘 = 5 does not provide large enough improvements on our metrics.
Second, we study the impact of the maximum number 𝑛 of API references that we add to the

prompt. Setting low values for 𝑛 can result in missing relevant context, whereas adding many
API references reduces the space left for context before the cursor. We perform experiments with
𝑛 ∈ {2, 10, 20, 40}. Figure 10 shows the results on our three metrics, with the similarity metrics
increasing with 𝑛, and exact API match peaking between 𝑛 = 10 and 𝑛 = 20. As a default in the rest
of the paper, we use 𝑛 = 20.

5.5 RQ4: Efficiency
The following evaluates the efficiency of the approach and how much each of De-Hallucinator’s
components contributes to its running time. The preprocessing phase takes, on average, under
one second per 1,000 lines of code in a project. For the projects in our dataset, it takes at most
80 seconds, and most projects need at most 26 seconds for the whole preprocessing phase. In a
production-level implementation, our CodeQL-based approach could be replaced by using static
information that is available on an IDE anyway, which is likely to further reduce the computational
effort. Moreover, updating the indexed API references, e.g., when the code base evolves, can be
done at low frequency in the background.

Retrieving relevant APIs and constructing the augmented prompt takes from 21 to 227 millisec-
onds per iteration. Finally, on our Nvidia T4 GPUs, the CodeGen v2.5 and the UniXcoder models take,
on average, 66.7 seconds and 44.9 seconds for each completion, respectively, and on our Nvidia Tesla
V100 GPU, the UniXcoder, CodeGen, CodeGen v2.5, and StarCoder+ models take, on average, 3.6
seconds, 18.6 seconds, 15.3 seconds, and 16.4 seconds per completion, respectively. These numbers
are roughly the same for the baseline and for querying the model with De-Hallucinator-augmented
prompts. It is important to note that this time is not representative of the time a real-world code
completion tool would take. A production-level deployment would run the LLM on a GPU cluster,
which typically answers queries within tens to hundreds of milliseconds, as evidenced by the (larger,
but not freely available) models of OpenAI.

6 LIMITATIONS AND THREATS TO VALIDITY
One limitation of our work is that we assume an API to be available when completing the code
that uses it. However, in some cases, a developer may first write an API usage and then implement
the API. In such cases, De-Hallucinator would be unable to retrieve the API reference, and hence,
could not improve the completion. To address this limitation, one could configure De-Hallucinator
to abstain from repeatedly querying the LLM if the similarity between the initial completion and
the retrieved API references is below a threshold.
We have implemented and evaluated De-Hallucinator for Python, and although our general

approach could be applied to any language, our conclusions are valid only for Python. The set of
Python projects we use might not be representative of all Python projects, which we try to mitigate
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Fig. 9. Relative improvements over the baseline for the maximum number of iterations, 𝑘 .

by selecting a diverse set of popular projects. Finally, we have evaluated De-Hallucinator with four
LLMs, excluding themodels of OpenAI because thosemodels are not publicly available andmay even
be taken offline at short notice, which would prevent future work from reproducing and comparing
against our work. Because these models, like the models we use in our evaluation, are unaware of
project-specific APIs, we expect that our approach would also improve their completions.
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Fig. 10. Relative improvements of De-Hallucinator for different maximum API reference counts, 𝑛.

7 RELATEDWORK
Data-Driven Code Completion. The idea to augment traditional type-based code completion in a

data-driven manner was introduced by Bruch et al.[Bruch et al. 2009]. More recently, statistical
models are used, such as a pre-trained BERT model [Devlin et al. 2018] applied to code comple-
tion [Liu et al. 2020], and models trained for specific kinds of completions, e.g., API usages [Raychev
et al. 2014] and test methods [Nie et al. 2023]. Grammars can help in improving statistical code
completions, either by restricting what tokens could be predicted next [Poesia et al. 2022] or by
generating code that leaves some syntax subtrees undefined [Guo et al. 2022b]. Hellendoorn et
al. [Hellendoorn et al. 2019] study data-driven code completion techniques based on recorded real-
world completion requests, with a focus on completing a single identifier at a time. Our work differs
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from all the above by providing project-specific API references as an input to a code completion
model.

Code Completion with LLMs and Local Context. Motivated by the observation that LLMs lack
project-specific information, Shrivastava et al. [Shrivastava et al. 2023] propose a repository-level
prompt generation technique to select the best context from a set of predefined contexts to solve the
task of line completion. Their method relies on training a separatemodel that takes a context window
around the incomplete line as input, and outputs a ranking for additional contexts. The training
routine uses the LLM (in their case Codex) to calculate the loss function. Ding et al.[Ding et al.
2022] describe a similar method, called CoCoMIC, to address the challenge of project-specific APIs.
They utilize a custom static analyzer, CCFinder, that initially creates a context graph of program
components in the project, and allows retrieval of relevant contexts to complete a statement. They
then fine-tuned CodeGen-2B-mono by adding the cross-file contexts to the input. Both of the above
are tightly coupled with the underlying LLM: The first approach [Shrivastava et al. 2023] uses the
LLM to calculate the loss function for training a new model, and the second approach [Ding et al.
2022] changes the model’s weights during fine-tuning. In contrast, De-Hallucinator queries the
LLM as a black-box, and hence, can be easily applied to other models. Moreover, De-Hallucinator
introduces a dialog-based way of interacting with an LLM for completion.
An approach developed concurrently with ours [Zhang et al. 2023a] includes fragments of

project-specific code in the prompt to improve the LLM’s predictions. Similar to our work, they
also query the model iteratively. Unlike De-Hallucinator, their approach retrieves existing code
fragments, and not API signatures. Since their approach relies on existing code fragments, it can
only improve predictions when a project-specific API has already been used before and when this
existing usage resembles the desired prediction, whereas our approach applies to all usages of
project-specific APIs.

Agrawal et al. [Agrawal et al. 2023] modify the decoding stage of the LLM and filter out tokens
that are invalid based on static analysis of the existing code. Their approach requires access to the
decoder of the LLM, as opposed to our approach which treats the LLM as a black box.

Combining LLMs and Retrieval. Lu et al.[Lu et al. 2022] use conventional retrieval methods to
find similar code pieces in a pre-defined code database and add them to the prompt as dead code.
Although this approach improves the quality of code completions by the LLMs, it does not address
the challenge of project-specific APIs. Nashid et al.[Nashid et al. 2023] propose a retrieval technique
to find suitable examples for few-shot learning, but do not apply the idea to code completion.
HyDE [Gao et al. 2023] prompts an LLM to generate hypothetical textual documents for a given
query, and then retrieves real documents that have an embedding similar to the hypothetical
documents. Their work shares the observation that LLM predictions may be factually inaccurate,
e.g., in our case by referring to non-existing APIs, while being similar to a factually correct document.
By addressing this problem via retrieval, their approach is limited to producing already existing
documents, whereas De-Hallucinator generates new code using an augmented prompt.

Improving LLM-Suggested Code. To improve code suggested by LLMs, existing techniques for
automated program repair [Le Goues et al. 2019] can be applied in a post-processing step [Fan et al.
2022]. Alternatively, the code predicted by a model can serve as input for initializing and guiding
a component-based code synthesis algorithm [Rahmani et al. 2021]. The above work and ours
shares the observation that completions from LLMs often share code elements with the desired
code. Instead of improving code in a post-processing step, De-Hallucinator nudges an LLM toward
producing better completions by improving the input given to the model.

, Vol. 1, No. 1, Article . Publication date: January 2024.



Aryaz Eghbali and Michael Pradel

Querying LLMs Multiple Times. Work on program repair queries a model multiple times until
finding a suitable repair [Lutellier et al. 2020]. They repeatedly query the model with the same
prompt and may trigger thousands of queries, whereas De-Hallucinator continuously augments
the prompt and queries the model only a few times to ensure low latency. Li et al.[Li et al. 2022]
propose querying a model with multiple mutations of the given code, and to then use the completion
that is closest to the “average” completion. De-Hallucinator differs from their approach by using
the initial prediction to construct an improved prompt. Xia et al.[Xia and Zhang 2023] introduce
conversational program repair, which iteratively improves a prompt by adding test failures observed
when executing the predicted code. In contrast, we do not require tests or executions, but only
information that is statically available in a typical IDE.

Other Work on Models of Code. The impressive abilities of neural models of code [Pradel and
Chandra 2022] has lead to various other applications beyond code completion. For example, neural
models provide type predictions [Hellendoorn et al. 2018; Malik et al. 2019; Pradel et al. 2020;
Wei et al. 2020], make predictions about code changes [Brody et al. 2020; Hoang et al. 2020], and
enable code search [Gu et al. 2018; Sachdev et al. 2018]. LLMs are shown to be useful, e.g., for
code mutation, test oracle generation, and test case generation [Bareiß et al. 2022; Kang et al. 2023;
Schäfer et al. 2023], and for automated program repair [Jiang et al. 2023].

8 CONCLUSION
Motivated by the inability of current LLM-based code completion to correctly predict project-specific
APIs, we present De-Hallucinator. Our approach combines the strengths of LLMs, retrieval-based
code completion, and iteratively augmenting the prompt with relevant API references. Because
De-Hallucinator treats the LLM as a black-box, does not rely on any fine-tuning, and does not
require any additional training data, it can be applied to any LLM. Our evaluation on 440 code
completion tasks shows that De-Hallucinator significantly improves the quality of code completions
over the state-of-the-art baseline, with relative improvements of 23–51% in edit distance and 24–61%
in the recall of correctly predicted API usages. Beyond code completion, the idea of using a model’s
initial predictions to guide retrieval efforts could be used in other software engineering tasks.

DATA-AVAILABILITY STATEMENT
Our implementation and the dataset of incomplete functions is publicly available at https://github.
com/AryazE/dehallucinator.
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